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ABSTRACT

The index of redundancy has been receiving increasing attention

in disciplines which employ applied multivariate techniques, par-

ticularly psychology and education. This index purports to measure

the degree to which one random vector can predict another random

vector. In this paper attention is focused on the present appli-

cations and interpretations of the index of redundancy and to the

relationship between the index and other multivariate techniques.

Also, simultaneous transformations of the two random vectors,

which differ from the standard canonical transformstions, are

derived and motivated. These simultaneous transformations are

shown to be naturally related to the index of redundancy.

KEY WORDS: Canonical correlation and variate analysis; Index

of Redundancy; Total variance.
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I. Introduction

Steward and Love (1968) proposed an index to measure the

degree to which one random vector can predict another random vector, or

equivalently, how redundant one random vector is relative to another

random vector. Their index is commonly referred to as the "index

of redundancy", and is becoming popular in some disciplines which

employ applied multivariate techniques, particularly psychology

and education. The index of redundancy is included in the applied

multivariate analysis books of Cooley and Lohnes (1971, 1976),

Tim (1975) and Cohen and Cohen (1975), which are popular in these

fields. It is also included in articles which review multivariate

techniques in these areas, such as Tatsuoka (1973) and Darlington,

Weinberg and Walberg (1975). More recently, the index of redundancy

has been introduced to the disciplines of geography [Briggs and

Leonard (1977a)], business [Yoram (1978)], and public health

ELaessig and Duckett (1979)].

Since its introduction, a number of papers have been written

on the interpretation, applications and properties of the index

of redundancy in the applied literature. These papers are usually

written in the jargon of the respective fields, and this has led

to some misconceptions and unresolved debates concerning the

applications and interpretations of the index of redundancy.

(See Wood (1972), Nicewander and Wood (1974, 1975), Miller (1975a),

Gleason (1977), Cohen and Cohen (1977), and Cramer and Nicewander

(1979).)



More statisticians are likely to eventually encounter the

index of redundancy, and so this paper is intended to be partially

expository. In this paper, attention is focused on the present

applications of the index of redundancy, and to the relationship

between the index and other multivariate techniques. This treat-

ment will hopefully help clarify some of the issues debated in

the applied literature. Also, in the appendix of this paper, a

commonly cited "property" of the index of redundancy is shown

to be incorrect by means of a counterexample.

In addition, simultaneous transformations of the two random

vectors, which differ from the standard canonical transformations,

are derived and motivated in Sections 4 and 5. These simultaneous

transformations, labeled the "redundancy transformations", are

shown to be naturally related to the index of redundancy. The

redundancy transformations are suggested for use when analyzing

the relationship between two random vectors in studies where the

index of redundancy is considered a valid summary index.

2. Preliminaries

Let Y be a p-dimensional random vector and let X be a

q-dimensional random vector, which without loss of generality

are both assumed to have zero mean. Denote the joint variance-

covariance matrix of Y and X by

(2.1)

xY x
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Unless otherwise stated, YX is assumed to be nonsingular. In

this paper, Y is regarded as the dependent vector and X is regarded

as the independent vector.

I. TOTAL VARIANCE. A commonly used measure of the overall

dispersion of the random vector Y is the total variance of Y,

which by definition is Trace(y) For B, an arbitrary (px k)Y.

matrix with rank(B) = k, the variance explained. or the variance

extracted by the set of linear combinations B"Y is defined to

be the difference between the total variance of Y and the total

variance of the residual vector Y- YB' where

(2.2) XB = yB(B'$YB) - B'Y

is the linear regression of Y on B'Y. The amount of the total

variance of Y which can be explained by the set of linear com-

binations is therefore

(2.3) Ve(Y.B'Y) Trace[TyB(B'IyB)-IB ].

The variance extracted by uncorrelated linear combinations of Y

are additive. That is, if B = [B1 :. B ] with B'Z B = 0, then
1 2 1 Y2

(2.4) Ve ( -B'Y) = Ve (Y:B Y) + V(Y-B Y).

-3-



In particular, if b b .... b are a set of non-null vectors

such that bT yb = 0 for i / j, then

(2.5) Trace(y) = v (Y:b'Y).

When the concept of explained variance is used in practice,

the random vector Y is often scaled so that each component of

Y has equal variance. The more general case, though, is to be

used in this paper. That is, the components of Y are not

necessarily assumed to have equal variances.

II. CANONICAL ANALYSIS. The most developed procedure for

analyzing the linear relationship between two random vectors is

canonical correlation and variable analysis. The largest canonical

I' correlation between the random vectors X and Y, denoted by p.

is the maximum absolute correlation between a linear combination

of X, say a')Xand a linear combination of Y, say bl) . The

variables a' X and b'l) are called the first canonical variables

for the X and Y vectors respectively. The second canonical

correlation P(2 ) is the maximum absolute correlation between a

linear combination of X uncorrelated with a'l)X and a linear

combination of Y uncorrelated with bl say and b'2)

respectively. The canonical correlations and variables P(i)'

a'i)X , and b'i)Y, i =3, 4, ..., min(p,q) are defined analogously.

If q> p, define a(i), i= p+l, p+2, .... q, to be any vectors

-4-



such that aj)X is uncorrelated with a'j)X for i/j, j =1, 2 ... q,

and i = p+1, p+2, ..., q. If p >q, define b(i ) , i=q+l, q+2, p,

in an analogous manner. For completeness, a'i)X, i=p+l, p+2, ... , q,

or b'iX, i=q+l, q+2, .... p, are considered canonical variables

associated with the canonical correlation p(i) = 0, p+l - i < q or

q+l -< i -< p. whichever the case.

To further specify the canonical variables, it is conventional

to choose a and b so that a' i)x(i ) = 1, i= 1, 2, .. q,F -(j)andb b t b~ =-i j=li, 2, ..... p.

Let A* be a (qx q) matrix with columns a ) , a .. g a(q)

and let B, be a (px p) matrix with columns b() , b( 2 )' .... b

When the transformations A; and B; are applied simultaneously to

the random vectors X and Y respectively, they are to be referred

to as the canonical transformations. The transformed vectors

BIY and AIX have the much simplified joint variance-covariance

matrix,

(2.6)(::: B .V A*AITXY *Al X A* C?

[Aiw 0], if p!q

where C =

with A being a diagonal matrix of order min(p,q) and having P(i)

-5-



as the ith diagonal element.

As defined, the canonical correlations and vectors satisfy

the following identities

-1 2
XY Y Yx-(i) (i) X'-(i),

-I 2
(2.7) 2 T p Z n

YX X X y(i) P(i) Y(i)' and

P (i) !(i) = TXxxyb(i)

An important property of canonical correlations and variables

is that they are co-ordinate free concepts. That is, they are

invariant under nonsingular linear transformations of Y and non-

singular linear transformations of X.

3. The Index of Redundancgq

bMany scalar-valued indices which are strictly functions of

the canonical correlations have been proposed to measure the

relationship between two random vectors. In a recent paper, Cramer

and Nicewander (1979) discuss many such indices.

However, the co-ordinate free property of the canonical

correlations is not always a desirable property. For example,

the concept of total variance is not co-ordinate free. The

ability of X to predict a linear combination of Y which accounts

for a large proportion of the total variance of Y may be of

more interest than the ability of X to predict a linear combination

of Y which accounts for a small proportion of the total variance

of Y. This distinction cannot be considered in an index which is

-6-
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strictly a function of the canonical correlations.

In consideration of this argument, Stewart and Love (1968)

proposed a measure which they called an "index of redundancy."

This index is a weighted average of the squared canonical

correlations, where the weights are the proportions of total

variance of Y which is explained by each of the canonical variates

bt Y.

DEFINITION 3.1. The index of redundancy is a measure of

how "redundant Y is given X," and is defined to be

R2 (y : X) = Zp=IPiV (  b ) )/Trace( )
Z1 1 i)Ve (Y

The index of redundancy is an asymmetric index. That is,

in general R 2 (X: X) / R 2 (X: Y). The index R 2 (Y :X) distinguishes

t between a dependent vector (Y) and an independent vector (X). If

the dependent vector is univariate, then the index of redundancy

is equivalent to the square of the multiple correlation coefficient.

An important representation of the index of redundancy is

given in the following lemma. This representation is discussed

by Stewart and Love (1968) without justification. A proof can be

found in Gleason (1976).

LEMMA 3.2 R2 (X : X) Trace(TYX 'tXy)/Trace(Ty.

This lemma states that the index of redundancy is the percent

reduction from the total variance of Y to the total variance of

-7-
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A

the residual vector Y- Y, where

A -(3.1) Y T YXT X

is the linear regression of Y on X. In other words, the index is

the proportion of the total variance of Y which can be explained

by the linear regression of Y on X. It should be noted that

Rao (1964) informally used this concept to measure what he called

the'redictive efficiency"of X for Y. Consequently, by statement

(8.6) in Rao (1964), we note that the index of redundancy can be

decomposed over any complete set of uncorrelated linear combinations

of the independent vector. That is, if a ,a ... ,a is any

set of non-zero vectors such that aTx j = 0 for i/ j, then

(3.2) R ) Z IR 2 ( a1X)

It is interesting to observe that statement (3.2) is a generalized

version of the summation given in the definition of the index of

redundancy, since

(3.3) R2 (: a i)X) = P2i)V(Y b!Y)/Trace($Y).

By using the representation for the index of redundancy

given in Lemma 3.2, we see that the index has the following

important property.

: -8-



Lemm 3.3. If P is orthogonal and A nonsingular, then

R 2 ( X) R 2 (PY:AX).

The index of redundancy, however, is not invariant under arbitrary

nonsingular transformations of the dependent vector.

REAIR _K. In the definition of the index of redundancy, it

is assumed that the joint variance-covariance matrix of the vectors

is nonsingular. This is a consequence of the use of canonical

correlations and variables in the definition. In view of the

representation of the index given by Lemma 3.2, Nicewander

and Wood (1975) note that the index of redundancy can be logically

extended in the following manner. If rank(Uy) >i and if TX is

nonsingular, then define

~~ 2 -(3.4) R (Y: X) Trace(T T XI  )/Trace( Y

If rank(y) >- 1 and rank(TX ) =r<q, then define

(3.5) R2 (Y :X) - R2 (Y: B'X),

where B is a (tx r) matrix such that B' xB is nonsingular. This

definition does not depend upon the choice of B. These extensions

of the index of redundancy also represent the proportion of the

total variance of Y which can be explained by the linear regression

of Y on X.

-9-



4. The Redundancy Transformations

In practice, the index of redunduncy is usually used as a

summary index in conjunction with canonical correlation and

variable analysis. (For example, see Stewart (1967), Briggs andifi
Leonard (1977a, 1977b), Oostendorp and Berlyne (1978) or Cohen,

Gaughran and Cohen (1979).) This practice is suggested not only

by Stewart and Love, but also in the review paper by Tatsuota (1973)

and in the applied multivariate analysis.books by Cooley and

Lohnes (1971) and Timm (1975). In addition, the index of redundancy

is included in a recent canonical analysis computer program by

Thompson and Frankiewicz (1979).

It is argued, though, by Nicewander and Wood (1974, 1975)

and by Cramer and Nicewander (1979) that the association of the

index of redundancy with canonical correlation and variable
analysis is somewhat aritficial. Canonical correlation and

variable analysis does not distinguish between a depenuent and

an independent vector, whereas the index of redundancy does. In

addition, the index of redundancy is only invariant under orthogonal

transformations of the dependent vector, whereas the canonical

correlations and variables are invariant under all nonsingular

transformations of the dependent vector.

In view of this argument, simultaneous transformations of

the two random vectors are introducted in the next theorem which

would be more appropriate to use in conjunction with the index of

redundancy than the standard canonical transformations. Being

-10-



more general, these transformations should prove to be useful in

studies where a distinction is made between the dependent vector

and the independent vector, and where only invariance under

orthogonal transformations of the dependent vector is desirable.

THEOREM 4.1 (The Redundancy Transformations)

Let TY,X TY YXj be a positive definite matrix of

IXY I XJ

order (p+q). There exists an orthogonal matrix Y and a non-

singular matrix X such that

0 X0 D? I

where

[A f 0], if p:q

D=

,if p> q

and A is a diagonal matrix of order min(p,q) with diagonal entries

(1) (2) - (min[p,q]) -

II

- .... - x



PROOF. The matrix Y y is positive semi-definite of

order p. Let X(1 ) A A(2 )  A - - - (P) ': 0 be its eigenvalues, and

choose Y such that its ith column, denoted by X,, is an eigen-

vector of Ixy associated with the eigenvalue X(i ) and

chosen such that yy = 6ij, where 6ij represents the Kronecker

delta. By construction, Y is an orthogonal matrix. Choose

such that its jth column is x = TX T j for j =, 2, .... r

where r= rank(YxxTx y. It is easy to verify that x
-1j

j = 1, 2, ... , r satsified the equation tx x Y xj (i)xj

Thus, we have x! Zx j = 6 for i,j =1, 2 ..... r. To complete

the definition of X, if q >r, let its remaining columns, denoted

by Xr~ Xr ... , x , be the solutions to the equation Z i = 0
by-S~'- +'q X XY YX-C

such that x! xj = 6. for i,j= r+l, r+2, .... q. So, by construction

we have ,r = 6. . for i,j = 1, 2, .... q. Finally, for• i X~j i-3

ic r, y! T &--ixij and for i>r, y.

Thus, the proof is complete.

The X and Y of Theorem 4.1 are not unique. The next theorem,

however, shows that any X and Y which satisfies Theorem 4.1 must

be of the form constructed in the proof.

THEOREM 4.2. If Y and X are matrices which satisfy Theorem

4.1 with y. and X1 the ith columns of Y and X respectively, then

Iyx X TXIxY~i = x(i)Xi'

- I x =A X., and
zX IXYTYXsi (i)~ a

xi
Wi- X yXYi-

-12-



with X 2 ( . r > 0 being the non-zero roots of -
(1) (2) (r) Yxxx XY,

and X x x 0.(r+l) (r+2) " " (max[p,q])

PROOF. Let Y and X be matrices satisfying Theorem 4.1, then

Y'y X= D and X'IX = I implies
-YX- -:

(4.1) TYX YDX-I and T = ,.

-1X -- 1- - - _ -Al-

Thus, YX X YDX -xx(x D'' = YDD'Y' = Y _ where

A1 = diagonal(X (1), x (2)' .. x(p)). This implies that yj

and A (i, 3 = 1, 2, ... , p satisfy TyxTl xyyi = X(i)yi. Likewise,
-1- -- -1 - -1
TXYY I 2 XX'(Xt ) D'Y'YDX XA2X , where A diagonal(X1 ,

2). .... Aq)), implies that x. and X ) , i = 1, 2, .... p
(2)' (qj)(i

!!~~ ~ ~ , x. "= i- Finally, Txlxyyi= [(Z-DY i
-1 Y-1 -1 -

% ~if X XY YX~i =l(i)~i "Fnly XY i Q 'y

"x Thus, the proof is complete.

The transformations Y' and X when simultaneously applied to

Y and X respectively, are to be referred to as the redundancy

transformations. When Y and X are thus transformed, Theorem 4.1

gives the resulting joint variance-covariance matrix. In addition,

y Y and x'X are to be referred to as the ith redundancy variables,

y. and x. as the ith redundancy vectors and A i) as the ith

redundancy root. It easily follows that the redundancy roots and

variables are invariant under orthogonal transformations of Y and

non-singular transformations of X. The redundancy vectors are

-13-



equivalent under these transformations.

As an exploratory technique, the redundancy transformations

do not simplify the joint variance-covariance matrix to the extent

in which the canonical transformations do. This is to be expected

since less information on the joint variance-covariance matrix is

sacrificed when only considering orthogonal, transformations of

Y. In particular, the index of redundancy is preserved. That

is, by applying Lemma 3.3 with P Y' and A = X', we obtain

(4.2) R2(X X) = R2 
- X = min(p'q) /Trace(U).

" -' ~ _i=1 ( )

5. The Optimality of the Redundancy Transformations

When the index of redundancy is used in conjunction with

canonical correlation and variable analysis, the value of (3.3)

is usually used to help determine which canonical variables

deserve intepretation and further attention rather than simply

using the canonical correlations themself. This approach, for

example, is applied in the previously mentioned studies of Briggs

Leonard (1977a, 1977b), Oostendorp and Berlyne (1978), Cohen,

Goughran and Cohen (1979), and Laessig and Duckett (1979).

Likewise, this approach is recommended by Stewart and Love (1968),

and also in the review paper by Tatsuoka (1973) and in the books

by Cooley and Lohnes (1971) and Timm (1975).

This practice of using the value of (3.3) for each of the

canonical variables to reduce, in essence, the dimensionality of

the two sets of multivariate responses is not an optimal procedure.

-14-



The canonical variables are extracted because they best explain

the intercorrelations between the sets of responses. They are

not necessarily the best linear combinations to consider when

attempting to account for the overall size of the index of

redundancy. It is shown in this section that the redundancy

variables are best suited for this purpose. Before doing so, it

is first necessary to extent the concept of the contribution

made by a canonical variable to the overall size of the index

of redundancy, which is given by (3.3), to the contribution

made by any set of linear combinations of X or by any set of

linear combinations of Y to the overall size of the index.

A natural extension for an arbitrary set of linear com-

binations of the dependent vector is the proportion of the total

variance of the dependent vector which can be explained by its

linear regression on these linear combinations only. That is,

2
the value of R Q A'X) can be considered as the contribution

made by the set of linear combinations A'X to the overall size

of the index of redundancy. Thus defined, the contributions

to the index made by uncorrelated linear combinations of the

independent vector are additive. If A = [A1 : A2] with AltA 0,

then

2 2 2
(5.1) R ( : A'X) = R A(AX) + R 2 (: AX).

In particular, if A is a (q x k) matrix with rank(Ao ) = k and

-15-



whose columns are a subset of the canonical vectors, say { ) i' I},

then we have the desired result

2 2
(5.2) R21X : AX) = i p V b' Y)/Trace( y).0(I) e(Ci)e y

For an arbitrary set of linear combinations of the dependent

vector, a suitable extension is not obvious. One extension pro-

posed by Miller (1969) and Miller and Farr (1971) for any linear

2 2combination b'Y is the product R(b'Y :X)R2( :b'Y). Their work

is discussed in more detail in the appendix of this paper. In

particular, it is shown in the appendix that it is possible for

this product to be greater than the index of redundancy itself.

Thus, an alternative generalization is needed.

To motivate an alternative generalization, note that

= V (Y. b Y)/Trace( y)

(5.3) 2(Y : B') : E(i) e ~yi)y

where B is a (p x k) matrix with rank(B ) = k and whose columns

are the canonical vectors [b(i)' ic I}. So, in general, it is~A
* proposed that R2 (X: B'Y) be considered as the contribution

made by the set of linear combinations B'Y to the overall size

of the index of redundancy. This quantity represents the pro-

portion of the total variance of Y which can be accounted for

by the linear regression of B'YonX. As defined, the contributions

to the index of redundancy made by uncorrelated linear combinations

-16-



of the dependent vector are not necessarily additive. The con-

tributions made by the linear combinations of Y'whose linear

regression on X are uncorrelated, though, are additive. That

is, if B = [BI :B 2  with B't yF X ' XYB 2 = 0, then

2 A 2 ~A 2 ,A

(5.4) R : B'Y) = (Y: B(Y) +R( : BY)

In particular, if b 1, b 2 ' ..., b are any set of vectors such

that b Y 1 1xybj = 0 for i# j, then
'I YX XXYj

2 p 2 A(5.5) R (Y x) R Y )

In view of these extensions of (3.3), the main optimality

property of the redundancy transformations is given in the next

I •theorem. This theorem states that of all sets of k pairs of

linear combinations of X and Y, the redundancy variables associated

with the k largest redundancy roots best account for the over-

all size of the index of redundancy.

THEOREM 5.1. Let x and y. be defined as in Theorem 4.2,

let Xk be a (qx k) matrix with columns xl , x2' . xk , and let

Y be a (px k) matrix with columns y 2'
'-k- 2

(i) For any (q x s) matrix A with rank(A) <k,

R( :A'X) - R XX).

(ii) For any (p x s) matrix B with rank(B) s k,

R 2  A 2 (y'

-17-



Before proving Theorem 5.1, it is interesting to note that

(5.6) R= R2(X: XY) k  /Trace(Ty)
-k- i=1 (i) y

PROOF OF THEOREM 5.1. Part (i) follows from the results

of Rao (1964) section 8. In that paper, it is shown that the

quantity Trace[ Y- yXA' (AT A'1)-IA xy is minimized over all

A of order (kxq) with rank(A) =k by choosing A' For all

such A, the inequality in part (i) holds since r(Y: AX) =

Trace[Y A' (A A')- IA'Txy /Trace( y). The inequality easily

extends to any A of order (sx q) with rank(A) -k, (see the

• remark at the end of section 3.)

To prove part (ii), we note that for all B of rank less

A
than or equal to k, r(Y :B'Y) is maximized by choosing B such
that B'Z -lX1  MX'_ where M has full rank. This follows from

1-

part (i). If k< r, where r = rank(Ty~ T- y), then by using

the representation for and given in (4.1), we have

X1  YkYDX IX' -D where diagon2)

If k > r, part (ii) is immu-ediate, since R( YY) = R X).

After reducing a multivariate response to a smaller set

of linear combinations of the response, it is customary in

a practice to consider linear transformations of the reduced set

of linear combinations. These linear transformations are

usually made to facilitate the interpretation of the reduced

set. So, it is important to note that the optimality property

-18-



for X X and Y1Y given in Theorem 5.1 still holds if either is trans-

formed by a nonsingular linear transformation. However, in

view of the discussion in section 4, only orthogonal transformations

of Y1Y would be appropciate.

6. Concluding Remarks

The redundancy transformation for the independent vector X

was first introduced by Rao (1964). He referred to this trans-

formation as the principal components transformation for the

instrumental variable X with respect to the variable Y. This

transformation also arises in reduced rank regression problems,

(see Brillinger (1975) Theorem 10.21, or Izenman (1976).) The

redundancy transformation for the dependent vector Y is the prin-
A

cipal components transformation for Y.

In this paper, these two transformations are viewed as

being naturally related to each other and to the index of redun-

dancy. In exploring the relationship between two multivariate

resp~onses, it should prove desirable to have a transformation

for one of the responses which is accompanied by a suitable

transformation f r the other response.

It must be acknowledged that Van den Wallenberg (1977)

also relates the index of redundancy with the redundancy trans-

formation for the vector X. He does not refer to Rao's paper

and derives it independently. In Van den Wallenberg's paper,

it is suggested that Y be transformed in a manner similar to

the transformation for X, that is, to use the eigenvectors of

-19-IL



ylxx In this approach, the transformation for Y is not

related to the transformation for X.

APPENDIX. A counterexamole to a result by Miller and Parr.

In defining the index of redundancy, Stewart and Love

refer to the value of (3.3) as "the proportion of variance

of the Y set explained by the correlation between ai)X and

b'i)Y." Stewart and Love observe that this quantity is the

proportion of the variance of the Y set "extracted" by the

canonical variate b' )Y times the proportion of the variance

of b'i)Y which is "predictable" from X.

Recognizing that linear combinations other than the canonical

vectors are often of interest, Miller (1969) and Miller and Farr

(1971) proposed a generalization of the above concept. To

quote them using the notation established in this paper, they

suggest that for any linear combination of Y, the product

(A.1) R 2( : bl'Y)R 2 (P'Y: X)

can be considered as "the proportion of the total variance in Y

explained by ? with respect to the component b'WY." This quantity

is the proportion of the total variance of Y which can be "ex-

tracted" by the variable b'l times the proportion of the variance

of b'Y which can be "explained" by X. Miller and Farr call

this concept a "multiplication law."

-20-
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In addition, they claim that if b, b2 .... b are a set~p

of vectors such that b' b = 0 for i/j, then "because of the

orthogonality of the components bY,' the proportions of the

total variance in Y explained by Xwith respect to each of the
components can be added to obtain R2(y: X). That is,

(A.2) R2 ( X) = R (: b! Y)R ( Y: X).

This summation is equivalent to the summation defining the index

of redundancy if the set of vectors {bi } are chosen to be the

canonical vectors, since R2 (b' i)Y: X) = p2 and R2 (

V e(Y :b)Y)/Trace(T).i

In both Miller (1969) and Miller and Farr (1971), statement

II((A.2) is justified by informal arguments. They accompany their

arguments by an example using the principal component vectors.

Statement (A.2), however, is incorrect. Also, to view

R 2(Y: b'Y)R 2 (b'Y: X) as the proportion of the total variance in Y

explained by X with respect to the components bY is misleading.

The following counterexample to (A.2) shows that it is possible to

2 2 2
have R(y: b'Y)R (b'Y : X) > R :X).

COUNTEREXAMPLE. Let the joint variance-covariance matrix

of Y and X be

-21-
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YX = 0.1 1.0 0.

.1 0.0 1.0

2
This gives R : X) = .005. Also, if b' = (1.0 0.0), then

R b'Y) = .505 and R2bY : X) = .01. Thus R b'Y)R2  = X)

.00505. Statement (A.2) is then countradicted by choosing b= (1.0 0.0)

and b= (-0.1 1.0).

It is interesting to note that if the vectors {b} in

statement (A.2) are chosen to be the principal component vectors,

then statement (A.2) is valid. To show this, observe that if

B is an orthogonal matrix, then R2(y :X) = Trace(BI' Tx T B)/Trace(ry),x Xs

'1 or equivalently

(A.3) R2(X: X) = =IR2 (bY X)var(b Y)/Trace( Y )

where b. represents the ith column of B and "var" designates

variance. If b. is a principal component vector, then it is

well known that var(blY) = V (Y: b!Y), and so var(b!Y)/Trace(y)=
1- e -1- ~ '1- Y

2(: b!Y). Therefore, statement (A.2) and (A.3) are equivalent

when the set of vectors {bi } is taken to be the principal com-

ponent vectors. This discussion explains why the example given

by Miller and Farr using the principal component variables

works correctly. The summation over the principal component

variables and the summation over the canonical variables how-

ever are not two special cases of the more general statement (A.2).
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Miller and Farr's results are often cited in papers per-

taining to the index of redundancy, such as Tatsuoka (1973),

Darlington, Weinberg and Walberg (1975), Dawson (1976), Briggs

and Leonard (1977a, 1977b) and Cramer and Nicewander (1979).

They are also cited in the multivariate analysis book by

Cooley and Lohnes (1971), and by one of the authors, Miller

(1975a, 1975b). However, no application of statement (A.2)

has appeared in practice for which the set of vectors (bi}

are not the canonical vectors or the principal component vec-

tors, even though Miller and Farr recommend its use in general.

Apparently, this accounts for the previously undetected error

in statement (A.2).

A1
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